

CODEI: Co-Design of Embodied Intelligence

Dejan Milojevic^{1,2}, Gioele Zardini³, Miriam Elser², Andrea Censi¹, Emilio Frazzoli¹

¹Institute for Dynamic Systems and Control, ETH Zürich, CH, ²Chemical Energy Carriers and Vehicle Systems Laboratory, Empa, Dübendorf, CH, ³Laboratory for Information and Decision Systems, MIT, Cambridge, MA, USA.

1 Introduction

Designing mobile robots involves hardware and software integration, exploring design options, and handling trade-offs. We automate this process to meet task requirements while minimizing resource use.

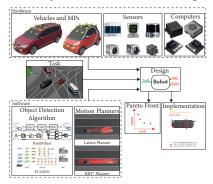


Figure 1: Illustration of the AV design problem for urban driving, using hardware and software catalogs [1].

2 Perception Requirements for Agents

Sampling-based planners generate occupancy queries: collision checks at a configuration and future time. Different planners have different information needs, creating trade-offs with optimality. We simulate the agent, record each query, and trace back what the perception must observe, based on prior knowledge of obstacle locations and motion.

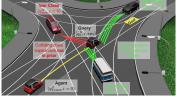


Figure 3: A* search lattice planner with motion primiti- Figure 4: The perception requirements are the green configurations $q_{ ext{SUV}}^{\mathcal{R}}$ and $q_{ ext{DUS}}^{\mathcal{R}}$ [1].

3 Benchmarking Perception Pipelines

Perception performance is benchmarked using real sensor data and off-the-shelf object detection models and abstracted as FNR and FPR.

Figure 5: Data flow for the entire benchmarking process [1].

4 Sensor Selection and Placement Problem

The match what perception provides and what planners require is framed as a set cover problem and solved via ILP.

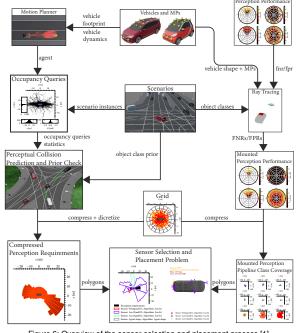


Figure 6: Overview of the sensor selection and placement process [1].

5 Co-design of Mobile Robots

To optimize the full robot design we apply monotone co-design theory. Design problems are modeled as feasibility relations between functionalities and resources, linked by a monotone map.

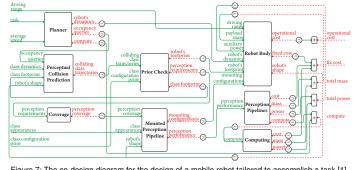


Figure 7: The co-design diagram for the design of a mobile robot tailored to accomplish a task [1].

125 100

Computer: nvidialetson AGXO Computation: 1746.9 GFLOPS Cost: 105734.0 CHF

6 Case Study on Autonomous Vehicle Design

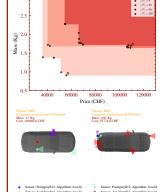
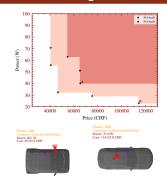
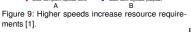




Figure 8: More task scenarios increase resource de

Price (CHF)

Figure 11: Requiring higher task performance, such as faster average speeds, demands more resources including faster vehicles and optimal planners [1].

Figure 10: More expected obstacle configurations in a task increase resource requirements [1]

References

mands [1].

[1] Dejan Milojevic, Gioele Zardini, Miriam Elser, Andrea Censi, and Emilio Frazzoli. CODEI: Resource-efficient task-driven co-design of perception and decision making for mobile robots applied to autonomous vehicles IEEE Transactions on Robotics, 41:2727-2748, 2025.